Ammonia Vapor Removal by Cu(3)(BTC)(2) and Its Characterization by MAS NMR.

نویسندگان

  • Gregory W Peterson
  • George W Wagner
  • Alex Balboa
  • John Mahle
  • Tara Sewell
  • Christopher J Karwacki
چکیده

Adsorption equilibria and NMR experiments were performed to study the adsorption and interactions of ammonia with metal-organic framework (MOF) HKUST-1, or Cu(3)(BTC)(2) (BTC = 1,3,5-benzenetricarboxylate). Ammonia capacities determined from chemical breakthrough measurements show significantly higher uptake capacities than from adsorption alone, suggesting a stronger interaction involving a potential reaction with the Cu(3)(BTC)(2) framework. Indeed, (1)H MAS NMR reveals that a major disruption of the relatively simple spectrum of Cu(3)(BTC)(2) occurs to generate a composite spectrum consistent with Cu(OH)(2) and (NH(4))(3)BTC species under humid conditions-the anticipated products of a copper(II) carboxylate reacted with limited ammonia. These species are not detected under dry conditions; however, reaction stoichiometry combined with XRD results suggests the partial formation of an indeterminate diammine copper (II) complex with some residual Cu(3)(BTC)(2) structure retained. Cu(II)-induced paramagnetic shifts exhibited by various species in (1)H and (13)C MAS NMR spectra are consistent with model compounds and previous literature. Although results show extensive ammonia capacity of Cu(3)(BTC)(2), much of the capacity is due to reaction with the structure itself, causing a permanent loss in porosity and structural integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and removal of extra lattice species in faujasites

The acidic properties of dealuminated Y-type zeolites were characterized by infrared (IR) spectroscopy, microcalorimetry, 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy and temperatureprogrammed desorption (TPD). Microcalorimetric measurements exhibited a unitbrm heat of adsorption ( 140 kJ/mol ) of ammonia on the strong Br6nsted acid sites. The differences in the a...

متن کامل

Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters.

The metal-organic frameworks (MOFs) MIL-100(Fe), Cu-BTC and CPO-27(Ni) were synthesised in 1 kg batches. The materials were then formed in two different industrially relevant ways. Firstly, dry granulation was used to produce pellets which were sieved to give material with a 300-1000 μm size, and the fines were subsequently recycled to mimic a large scale industrial process. Secondly, wet granu...

متن کامل

Synthesis, characterization, antioxidant and antimicrobial activities of a heptadentate N4O3-type Schiff base ligand and its metal complexes

Mo(III), Fe(III), Cd(II), Zn(II), Cu(II) complexes based on Tris[2-salicylaldeneimino)ethyl]amine (H3saltren) have been successfully synthesized. Newly prepared compounds have been characterized by 1H-NMR, 13C-NMR, IR and UV–VIS spectroscopy techniques. The spectral studies confirmed the ligand coordinates the metal ion to form complex via the oxygen and nitroge...

متن کامل

Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue

Three-dimensional (3D) printing was applied for the fabrication of acrylonitrile butadiene styrene (ABS) framework. Functionalization of the ABS framework was then performed by coating of porous Cu-BTC (BTC = benzene tricarboxylic acid) metal-organic frameworks on it using a step-by-step in-situ growth. The size of the Cu-BTC particles on ABS was ranged from 200 nm to 900 nm. The Cu-BTC/ABS fra...

متن کامل

Enhanced sensitivity and resolution in (1)H solid-state NMR spectroscopy of paramagnetic complexes under very fast magic angle spinning.

High-resolution NMR spectroscopy for paramagnetic complexes in solids has been rarely performed because of its limited sensitivity and resolution due to large paramagnetic shifts and associated technical difficulties. The present study demonstrates that magic angle spinning (MAS) at speeds exceeding 20 kHz provides unusually high sensitivity and excellent resolution in 1H solid-state NMR (SSNMR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. C, Nanomaterials and interfaces

دوره 113 31  شماره 

صفحات  -

تاریخ انتشار 2009